天天小说

手机浏览器扫描二维码访问

第六百二十九章 hermitian-einstein度量(第1页)

另一个与卡拉比猜想密切相关的问题是代数几何中全纯向量丛的稳定性与其上的Hermitian-Einstein度量的对应问题,这个问题约化成一个与规范场理论相关的极为困难的非线性方程解的存在性问题。

1986年丘成桐与乌伦贝克(Uhlenbeck)合作,在卡勒流形上完全解决了这个问题。

稍后,唐纳森也在投影流形上用不同的方法将这个问题解决。

1988年,辛普森(Simpson)将这些结果推广并与霍奇变分理论相结合,发展成为代数几何中一个极为有效的工具。

凯勒流形的内在对称性

我们花了点时间来讨论度规,是为了要对凯勒度规和具备这种度规的凯勒流形能够稍微有点概念。

一个度规是否为凯勒,和在空间上移动时,度规如何变化有关。

凯勒流形是一组叫作“厄米特流形”

(Hermitianmanifold)的复流形的子类。

在厄米特流形上,你可以把复数坐标的原点放在任何一点上,它在该点上的度规看起来像是标准的欧氏几何度规。

但当你离开该点时,它的度规就愈来愈不像欧氏的。

更明确地说,当移动到与原点的距离为ε时,度规系数本身的改变差异大致是ε倍。

我们将这样的流形称为“一阶欧氏空间”

所以如果ε是0.001英寸(1英寸=2.54厘米),当我们离开ε距离时,厄米特度规的系数与原先的差距会维持在约0.001英寸的误差内。

至于凯勒流形则是“二阶欧氏空间”

,这表示它的度规会更加稳定。

当与原点的距离为ε时,凯勒流形的度规系数的改变大致是ε2倍。

沿用前面的例子,当ε=0.001英寸时,度规的变化误差只有0.000001英寸。

为何卡拉比要特别重视凯勒流形呢?要回答这个问题,我们得先考虑可能的选择范围。

比方说,如果真的想要严格限制,你可以坚持流形必须是完全平坦的。

但只要是二维以上的任何维度,唯一完全平坦的紧致流形就只有环面或它的近亲。

就流形而言,环面其实相当简单,因而也相当受限。

我们希望能够更多样,看到更多可能性。

至于厄米特流形,则又嫌限制太少,它的可能性太多太多了。

于是介于厄米特和平坦之间的凯勒流形,正具有几何学家经常寻找的那种特质:它们具有足够多的结构,因此不会难以操作,但是结构又不会多到限制过多,以至于根本找不到符合你的明确条件的流形。

喜欢数学心请大家收藏:(aiquwx)数学心

请勿开启浏览器阅读模式,否则将导致章节内容缺失及无法阅读下一章。

一本杂录  系统盯上龙椅后,公主天天作死  我与仙子不两立  重生1961,开局相亲对象就被截胡!  苟在末日,独自修仙  重生后在前世死对头怀里兴风作浪  要离婚你高冷,再婚又发疯?  离婚后,傅先生对她俯首称臣  弃我选白月光?我离婚你疯什么!  全家逼我离婚,现在后悔有用么  从流民到皇帝,朕这一生如履薄冰  末世降临:我招收下属,获得百倍物资  和扶弟魔老婆离婚后,我送她全家升天  聊天群:开局获得赛亚人血脉  CS:不是,你的残局靠请神啊?  带白月光回家,我离婚你悔啥?  庆余年:范府大宗师  死亡来信  重生79,离婚后知青老婆她后悔了  糟了,那妖女也重生了!  

热门小说推荐
太古神王

太古神王

九天大陆,天穹之上有九条星河,亿万星辰,皆为武命星辰,武道之人,可沟通星辰,觉醒星魂,成武命修士。传说,九天大陆最为厉害的武修,每突破一个境界,便能开辟一...

飞剑问道

飞剑问道

在这个世界,有狐仙河神水怪大妖,也有求长生的修行者。修行者们,开法眼,可看妖魔鬼怪。炼一口飞剑,可千里杀敌。千里眼顺风耳,更可探查四方。秦府二公子‘秦云’,便是一位修行者...

闪婚厚爱:误嫁天价老公

闪婚厚爱:误嫁天价老公

简然以为自己嫁了一个普通男人,谁料这个男人摇身一变,成了她公司的总裁大人。不仅如此,他还是亚洲首富帝国集团最神秘的继承者。人前,他是杀伐果断冷血无情的商业帝国掌舵者。人后,他是一头披着羊皮的狼,把她啃得连骨头也不剩。...

极品妖孽归来

极品妖孽归来

他曾是圣殿国王,四大洲只手遮天,却因心爱女人的背叛,险些命丧黄泉。为复仇,他踏上回归路。在酒吧昏暗的角落,有佳人绝色,一个精彩纷呈的故事,就此展开...

梦醒细无声

梦醒细无声

由终点回到原点,洪涛又回到了他第一次重生前的时代,不过失去了三次重生穿越的所有记忆。假如没有重生过,没有记忆的金手指,他会是一个什么样子呢?在波澜壮阔的改革开放高潮期,他是屹立在潮头的弄潮儿?还是被浪潮拍碎的浪花?他的记忆还能不能回来?江竹意还会不会伴着他这一生?金月在这一世里和他又有什么交集?小舅舅还会是那个妻管...

特种奶爸俏老婆

特种奶爸俏老婆

啥,老子堂堂的漠北兵王,居然要当奶爸?好吧,看在孩子他妈貌若天仙的份儿上,老子勉强答应了...

每日热搜小说推荐